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Genetic Association Studies
Kathryn L. Lunetta, PhD

With the completion of the HapMap project1 and the
development of technology that allows the examina-

tion of �1 million genetic polymorphisms at once, genetic
association studies are becoming more comprehensive. This
article first provides a brief overview of the rationale for
genetic association studies; it then discusses the primary
features differentiating genetic from standard association
studies and emphasizes these differences with an example.
Finally, this article reviews methods for addressing 2 of the
main pitfalls of genetic association studies: population strat-
ification and multiple testing. The principal focus of this
primer is population-based association studies using unre-
lated individuals. A future article will address family-based
linkage and association studies.

Rationale
Traditional epidemiological studies focus on assessing the
impact of specific risk factors on disease risk in populations.
The goal of a genetic association study is to establish
statistical associations between �1 genetic polymorphisms
and phenotypes or disease states and thus to identify genetic
risk factors that can later be studied in a more comprehensive
manner using traditional epidemiological methods. Ideally,
the statistical analyses brings us to the point where 1 or
several genetic variants are identified as the potential func-
tional variants within a gene, so that laboratory scientists can
then use experimental methods to determine what functional
purpose the variants have and how it might relate to the
phenotype. Historically, the term polymorphism has been
used to refer to genetic mutations that occur with a frequency
�1% in the population. This article refers to genomic
locations with multiple alleles interchangeably as genetic
variants or polymorphisms. Pollex and Hegele2 describe
many types of genetic variants found in the human genome
and review the current state of knowledge concerning copy
number variants and cardiovascular disease. This article
focuses on single-nucleotide polymorphisms (SNPs), al-
though much of what is presented is relevant to all types of
variants.

We expect to see an association between a genetic variant
and phenotype when the variant has a functional effect on the
trait or when it is in linkage disequilibrium (LD) with a
functional variant. LD is the nonindependence of alleles at 2
(or more) loci in a population resulting from their close

proximity on a chromosome. The LD between 2 loci is a
function of the crossover rate and the number of generations
since the mutation occurred or was introduced into the
population. LD makes genome-wide association studies pos-
sible. Although there are millions of polymorphisms in the
human genome, many are in LD with each other and thus
carry redundant information. Testing 1 variant gives informa-
tion about others, so it is not necessary to test all poly-
morphisms. Several recent articles provide excellent analyses
and comparisons of the extent of LD in various human
populations.3–6

Genetic Association Studies
Genetic association studies should not be pursued unless the
trait being studied has established evidence for heritability; ie,
evidence for familial correlation or disease clustering should
be unequivocal. The primary features differentiating how we
test for association with a genetic polymorphism versus
typical epidemiological covariates are that we test genetic
variants for Hardy-Weinberg equilibrium (HWE) before test-
ing for association, and we must specify a genetic model for
the association test. This article briefly describes the options
for study focus and design and presents the methods and
rationale for HWE testing and genetic model selection.

Study Focus: Candidate Gene Versus
Genome-Wide Design

Until recently, most genetic association studies examined a
single polymorphism or a set of polymorphisms near a single
gene or focused on a candidate region defined by a linkage
peak determined by a family study. With the ever-improving
genotyping technology, genome-wide association studies,
with hundreds of thousands or even millions of polymor-
phisms genotyped, have become feasible. The genome-wide
approach is unbiased in that it does not require prior hypoth-
eses about what types of genes or polymorphisms are most
likely to be associated with the phenotypes of interest.
However, testing a large number of polymorphisms required
for a genome-wide study comes at a price; the power to
definitively identify associations is low when such a large
number of tests is performed. This issue is discussed below.
Candidate gene studies limit the number of tests to a small
subset of the genome and focus hypotheses on sets of genes
that we have prior reason to believe might be associated with
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the phenotype of interest. However, even in the context of a
candidate gene study, we may end up testing tens of thou-
sands of SNPs. Selecting SNPs that best represent the
common variation in the genome (eg, tag SNPs)7 helps to
minimize the number of SNPs tested, but using tag SNPs
lowers power compared with testing the functional SNPs.8,9

Study Designs and Outcome Measures
Study design and choice of outcome for genetic association
studies should follow the same concepts and principles used
for any epidemiological study. Typical study designs include
case-control, in which individuals with and without the
outcome of interest are ascertained, and random ascertain-
ment, in which a random sample of individuals from a
population are studied. The phenotypic outcome of interest
affects the choice of study ascertainment; eg, rare outcomes
are best studied with a case-control design because random
samples will select few individuals with the outcome of
interest. Recent articles in this primer series have presented
overviews of regression for analysis of quantitative out-
comes10 and survival methods for time-to-onset outcomes.11

Detailed review of the variety of study designs and outcome
measures is beyond the scope of this tutorial. More compre-
hensive information is available in epidemiology and statis-
tics texts, eg, the text by Jewel.12

Hardy-Weinberg Equilibrium
In association studies, we generally test each SNP for HWE
before testing for association with phenotypes. The Hardy-
Weinberg law states that the genotype frequencies and allele
frequencies of a large, randomly mating population remain
constant from generation to generation provided migration,
mutation, and selection do not take place. Therefore, HWE is
the stable distribution of frequencies of the genotypes AA,
Aa, and aa in the proportions p2, 2pq, and q2, respectively
(where p and q are the frequencies of the alleles A and a).
HWE is a consequence of random mating within a population
in the absence of mutation, migration, natural selection, or
random drift. Practically speaking, it is the state in which the
maternally and paternally inherited alleles of an individual at
a particular locus are statistically independent. A significant
departure from HWE for a SNP in a sample may indicate
nonrandom mating and possibly population stratification,
nonrandom genotyping error, or missing genotype data in
which 1 allele or genotype is more often misclassified or
missing than the other. Genotyping error or missing genotype
data may lead to spurious associations if the probability that
genotypes are missing or misclassified differs for different
phenotypes.13,14 Nonrandom mating may be due to structured
or stratified samples and can result in spurious association as
a result of confounding, as described below.

We test a SNP for HWE by comparing the observed
genotype counts in a sample with those expected under HWE.
The simplest test is a goodness-of-fit �2 test. We estimate the
SNP allele frequencies p and q�1�p by determining their
proportions in the sample and then determining the expected
genotype counts using the HWE expected frequencies Np2,
2Npq, and Nq2, where N is the number of individuals
genotyped. Then, a goodness-of-fit �2 test compares the

observed and expected counts. Because the goodness-of-fit
test gives inflated type I error rates under some conditions,
including rates for polymorphisms with small minor allele
frequencies, alternative exact tests of HWE have been devel-
oped15,16 and are becoming more widely used.

In a sample that is not ascertained on the basis of any
specific phenotype, the HWE test should be performed on the
full sample. For ascertained samples such as a case-control
samples, if the population prevalence of the trait is low,
Hardy-Weinberg testing should be conducted in the controls
because we expect departure from HWE among cases for any
polymorphism that is associated with case status. For com-
mon traits, we expect both cases and controls to depart from
HWE for polymorphisms associated with case status. SNPs
with genotypes that depart significantly from Hardy-Wein-
berg–expected proportions usually are excluded from asso-
ciation analyses. The criterion used to decide whether or not
to omit a SNP from association analyses depends on a
number of factors, including the number of SNPs tested and
the call rate (proportion of observations successfully geno-
typed); often, SNPs with HWE test values of P�0.01 or
0.001 are omitted from association analyses.

Genetic Model
There are 2 approaches for testing association between
polymorphisms and an outcome: allelic and genotypic tests.
To determine the appropriate test for association, we must
first specify a genetic model. We can assume dominance of
one of the alleles by treating the heterozygote and one of the
homozygote genotypes as a single category. This dichotomi-
zation of the SNP genotypes forces heterozygotes to have the
same risk or mean phenotype as one of the homozygotes.
Additive models impose a structure in which each additional
copy of the variant allele increases the response, whether log
odds ratio, log hazard ratio, or mean phenotype, by the same
amount. A general genetic model retains the 3 distinct
genotype classes and makes no assumptions about how the
risk or mean for heterozygotes compares with the 2 homozy-
gotes. The general model requires 2 df for testing association
for a SNP, whereas the other models require only 1 df.

For categorical outcomes, the simplest association test is a
�2 test of independence computed on a cross-classification
table of outcome versus alleles or genotypes. The test has
degrees of freedom (m�1)(n�1), where n is the number of
phenotypic classes and m is the number of genotypic or
allelic classes. For example, m�3 for a SNP genotype test if
all 3 genotypes are observed and m�2 for a SNP allele test.
Allelic association tests assume that the 2 alleles within each
individual are independent (ie, that they are in HWE).
Armitage’s trend test and other tests that assume additivity of
allele effects are alternatives that do not impose this assump-
tion17 and are therefore preferred. Under HWE, the allele-
based test and the trend test are asymptotically equivalent.
The general model, or genotype-based test, which treats the 3
genotypes as separate categories, is the most flexible choice,
but the additional degree of freedom required results in a test
that is less powerful than the correct genetic model when the
correct model is known. The options for the genetic model are
the same for any regression-based association analysis in
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which one can use a factor with 3 levels to allow a general
genetic model or code the alleles as dominant, recessive, or
additive. For example, for quantitative phenotypes, ANOVA,
a type of linear regression meant for quantitative outcomes
and categorical predictors, can be used to test for association
between a genotype and a phenotype. Instead of comparing
counts of cases and controls for each genotype, we look for
differences in mean phenotype among the genotype classes.

Adjustment for Covariates
Unlike classic epidemiology studies, SNP association studies
are unlikely to be confounded by behavioral and environmen-
tal factors because these factors usually do not alter genotype.
If behavioral or environmental factors affect phenotype inde-
pendently of the genes of interest, however, adjustment may
increase precision. Adjustment for traits or comorbidities that
also may be associated with SNPs will remove confounding
resulting from these factors.

Example
Estrogen receptor � (ESR1) polymorphisms were tested for
association with cardiovascular disease outcomes18 in a sub-
set of independent individuals in the Framingham offspring
cohort. Details concerning the Framingham offspring cohort
selection criteria have been described.19 Here, we use the
previously published genotype and phenotype data for the
ESR1 polymorphism c.454 to 397T�C, also known as
�397T/C, as PvuII, and by its RefSNP accession ID
rs2234693, to illustrate a simple SNP association analysis.
Table 1 shows the number of individuals by acute recognized
myocardial infarction (MI) status and genotype. The propor-
tion of individuals with the CC genotype is greater among
individuals who have had a recognized acute MI than among
those who have not. The second set of columns in Table 1
display the allele counts and percentages. We determine the
allele counts by summing the total number of T and C alleles
in each category; there are twice as many alleles as geno-
types. The third set of columns in Table 1 display the

expected genotype counts under the assumption of HWE.
This sample of individuals was selected randomly from the
population of Framingham, so testing for HWE in the full
sample is appropriate. There is no evidence to reject the
assumption of HWE in the sample (P�0.96). For the small
subset of 59 individuals with recognized acute MI, there is
evidence for a lack of HWE (P�0.03). We expect departure
from HWE among cases for polymorphisms associated with
case status. Table 2 presents the odds ratios (ORs) and test
statistics for tests of association between acute MI status and
ESR1 genotype under several models. Every model provides
significant evidence for association except the model that
combines CT and CC genotypes (the dominant C allele
model). The reason is that the crude ORs indicate that
individuals carrying the CC genotype are at increased risk
compared with those with the TT genotype (OR, 2.12),
whereas individuals carrying the CT genotype have some-
what decreased risk compared with those with the TT
genotype (OR, 0.79). For this example, the trend test and the
allele test produce nearly identical statistics. When we impose
an additive model on the data, we force the odds for CT
individuals to be between that of CC and TT individuals. It is
evident from the reduced level of significance of these 2
additive model tests compared with the general genotype
model that additivity is not a good fit to the data. The model
treating the T allele as dominant, which combines the TT and
CT genotypes into 1 category, provides the smallest P value
of all the association tests. The difference between the test
statistics for the general model and the specific models
provides information about the fit of each model. The general
model always has the largest �2 statistic; specific models with
similar �2 statistics provide the best fit to the data.

Three quantitative phenotypes measured at entry to the
study also were tested for association with the polymorphism.
Table 3 presents the mean and SD for body mass index, total
cholesterol, and high-density lipoprotein cholesterol, along
with the P value from an ANOVA F test comparing the 3
means. None of the phenotypes differ significantly in mean

Table 1. Recognized Acute MI at Exam 6 by ESR1 PvuII genotype in the Framingham Offspring Study

Observed Genotype Counts, n (%)
Observed Allele Counts, n

(%) Expected Counts Under HWE, n

�2 Statistic PTT CT CC Total T C TT CT CC

MI 16 (27) 21 (36) 22 (37) 59 53 (45) 65 (55) 11.90 29.19 17.90 4.65 0.03

No MI 509 (30) 841 (50) 330 (20) 1680 1859 (55) 1501 (45) 514.27 830.46 335.27 0.27 0.60

Total 525 (30) 862 (50) 352 (20) 1739 1912 (55) 1566 (45) 525.55 860.89 352.55 0.003 0.96

Table 2. Tests of Association Between ESR1 PvuII Genotype and Recognized Acute MI

Genotype

�2 Statistic df PTT CT CC

Crude OR (vs TT) 1 0.79 2.12 11.36 2 0.0034

Additive model OR (vs TT) 1 1.52 2.31 5.00 1 0.025

Dominant C allele OR (vs TT) 1 1.17 1.17 0.27 1 0.60

Dominant T allele OR (vs TT�CT) 1 1 2.43 10.99 1 0.0009

Allele table, C vs T allele 1 (T) 1.52 (C) 4.99 1 0.025
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by genotype (0.32�P�0.61). Given how similar the means
are across genotypes, it is clear that neither an additive model
nor a dominant model would increase the evidence for
association.

Pitfalls
Two of the common problems that must be addressed in any
genetic association study are population stratification and the
large numbers of hypotheses tested.

Population Stratification
Population stratification refers to the situation in which
individuals in a study differ by ethnic background or another
potentially confounding factor for different phenotypes. For
example, a study might ascertain cases and controls so that
cases have a greater proportion of subjects of Hispanic
descent than controls. Spurious association resulting from
population stratification can occur if both the phenotype
distribution and the genotype distribution differ among the
subpopulations (eg, ethnicity). When we know the subpopu-
lation membership of individuals, we can perform stratified
analyses and remove all confounding. For example, an
analysis of a sample consisting of black and Asian individuals
can be stratified by ethnicity. Alternatively, we can use
family-based study designs and family-based association
tests, which stratify analyses by family. However, in many
situations, we do not have reliable information about the
structure, nor do we have a family-based study design. Under
these conditions, a number of options exist. First, we should
adjust for any covariates that may be related to population
structure. These may include self-reported ethnicity and
geographic location (eg, study site for a multisite study or
place of birth).20 After removing the effects of these potential
confounders, one can adjust for the residual, average level of
stratification using the method known as genomic control,21

which removes the average bias resulting from population
structure. Some SNP allele frequencies vary across popula-
tions and are therefore susceptible to stratification bias.
Genomic control may undercorrect for stratification for SNPs
with extreme differences across subpopulations that can
occur in a population that otherwise appears to have low
levels of structure. For example, a set of 178 SNPs typed on
a sample of Europeans yielded no evidence for population
stratification using genomic control, yet a specific SNP in the
LCT gene demonstrated significant association with height
that was later attributed to stratification bias.22 There are

several alternatives to genomic control. For genome-wide
association data, individuals can be clustered into genetically
homogeneous subsets using pairwise identity-by-state infor-
mation across all loci. Association analyses can then be
performed stratified by cluster.23 Alternatively, principal-
components analysis can be used to adjust for genetic
ancestry.24,25 For data sets with fewer SNPs, the model-based
structured association method of Pritchard et al26,27 assigns
individuals to latent subpopulations and then performs strat-
ified association tests. In practice, when we have a new,
significant association to report, it is useful to gather data on
allele frequencies across many populations from public data-
bases. If the SNP tends to have similar allele frequencies
across populations, it is unlikely to be subject to spurious
association resulting from stratification.

Multiple Testing
Contemporary association studies consider multiple poly-
morphisms. Additionally, some studies report the results of
multiple, often correlated phenotypes or the results of multi-
ple genetic models or covariate adjustments. We define the
power of an association test to be the probability that the
association test rejects the null hypothesis under the condition
that the polymorphism is truly associated with the phenotype.
A type I error occurs when we reject the null hypothesis
when, in fact, there is no true association between the
polymorphism and the phenotype. The nominal significance
level is the type I error rate, �, selected for the individual
association tests. Traditionally, when only 1 or a few tests are
performed, we set ��0.05. For studies in which we test many
hypotheses, the nominal significance level chosen for a study
dictates the proportion of all of the reported tests that are
found to be significant, even when none of the hypotheses are
true. Usually, when a large number of hypotheses (eg, SNPs)
are tested, we adjust the nominal significance level downward
so that we do not falsely reject too many hypotheses. In the
context of candidate gene and genome-wide association
studies, many methods have been proposed to account for the
large number of tests performed while attempting to retain
high power. Two complementary approaches exist for mini-
mizing the effects of multiple testing: We can incorporate
some strategy for limiting the number of association tests
performed, and we can adjust for the number of tests that we
do perform.

For a study of a single phenotype and multiple SNPs, the
most efficient way to limit the number of tests is to perform
a single test per SNP. For a SNP that is truly associated with
the phenotype, the most powerful test is the one that most
closely reflects the true, underlying genetic model. However,
because the true genetic model is not known, the general or
additive genetic model is usually the best choice. The genetic
model and test to be used should be determined before
analysis. A second option to limit the number of tests includes
performing a test of association between the phenotype and
haplotypes or multilocus genotypes rather than each SNP
individually. For a study with multiple phenotypes and
multiple SNPs, 1 option for limiting the number of tests is
to use a multivariate test to test for association between the
set of phenotypes and each SNP. For any SNP associated

Table 3. Baseline Characteristics of Participants by ESR1
Pvu II Genotype

Genotype

PTT CT CC

BMI, kg/m2 25 (4.0) 25 (4.2) 25 (4.6) 0.32

Total cholesterol,
mg/dL

194.4 (36.0) 196.5 (39.2) 193.6 (36.1) 0.39

HDL cholesterol,
mg/dL

50.7 (50.8) 50.9 (50.9) 50.0 (50.0) 0.61

BMI indicates body mass index; HDL, high-density lipoprotein. Values are
mean (SD).
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with the set of phenotypes, individual tests of association
between each phenotype and the SNP will help to determine
which phenotype or subset of phenotypes is associated with
the SNP.

The simplest correction for multiple testing is the Bonfer-
roni adjustment, in which we multiply nominal P values by
the total number of tests performed. The underlying assump-
tion is that the set of tests are independent; therefore,
Bonferroni correction is conservative in the context of corre-
lated tests. The adjustment controls the family-wise error rate,
which is the probability of at least 1 type I error. For example,
if one sets the experiment-wide error rate at 0.05, then the
Bonferroni-adjusted P values must be �0.05 to be considered
significant, and the probability of observing at least 1 such
result in the entire experiment is �0.05. Nyholt28 introduced
a refinement of the Bonferroni procedure for the case of SNPs
in linkage disequilibrium. One estimates the effective number
of independent SNPs among a set of genotyped SNPs; this
number is then substituted for the total number of SNPs tested
in the Bonferroni adjustment. Because the effective number
of independent SNPs is always less than or equal to the total
number of SNPs tested, this method is less conservative than
the Bonferroni procedure.

Permutation testing is an alternative way to adjust for large
numbers of tests in typical association studies. This method
incorporates the correlation between phenotypes and/or be-
tween genotypes and is therefore less conservative than
Bonferroni adjustment. The basic idea is to permute pheno-
type(s) with respect to the genotype(s) among observations,
thus removing any association between phenotypes and
genotypes but retaining the correlation among phenotypes
and among genotypes resulting from LD within an individual.
The process is done thousands of times; all of the association
test statistics and corresponding P values that were computed
on the original data set are recomputed on each permuted data
set. Finally, the minimum P value from among the original
data set association tests is compared with the distribution of
the minimum P values obtained from the set of permuted data
sets.

The false discovery rate, first proposed by Benjamini and
Hochberg,29 is a less stringent form of adjustment. In contrast
to the Bonferroni adjustment, the false discovery rate controls
the expected proportion of false discoveries among all re-
jected hypotheses. In general, controlling the false discovery
rate allows us to reject more hypotheses than controlling the
family-wise error rate. However, for genome-wide or large-
scale candidate gene association studies, a simple false
discovery rate adjustment may still be very stringent and
result in low power to detect associations with modest effect
size. Weighted false discovery rates30,31 and stratified false
discovery rates32 set different criteria for significance (or
follow-up) for different categories of tests. These methods
will result in a greater power to detect true associations if
different subsets of SNPs have a higher proportion of truly
associated SNPs (true positives) than the full set of SNPs.

Guidelines for Publishing
Guidelines for publishing association studies are evolving,
along with the study designs and numbers of polymorphisms

tested. Two principles that have emerged are that data should
be presented in a way that facilitates replication and/or
meta-analysis by other researchers and that the results for all
polymorphisms tested (not just positive associations) should
be made freely available. The first principle suggests that
unique, universally recognized names for each polymorphism
should be used in articles such as the reference SNP identifier
(rs number) and that effect estimates (eg, regression param-
eters, or odds ratios) and their SEs should be presented, along
with P values and genotype counts, for association tests. The
criteria for publishing a genetic association study vary widely
among journals and are beyond the scope of this review.

Conclusions
This primer has discussed some of the analytic features of
genetic studies that differ from other epidemiological studies.
Some features of large-scale candidate gene and genome-
wide studies with emerging importance that have not been
addressed include replication and validation studies and
meta-analyses. Other articles in this series will provide
reviews of family-based study designs and methods, includ-
ing family-based (transmission) association tests.

Disclosures
None.
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